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Abstract 

This report describes the technique developed for shaping the sound spectrum 
of high intensity sound to achieve specialized response characteristics from single 
horns or multiple horn arrays. The design parameter analysis for the technique 
developed includes computations and computer simulation of horn responses using 
the hyperbolic horn theory. This technique provides the ability to minimize any 
undertesting or overtesting of the test article. 
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Acoustic Spectrum Shaping Utilizing 
Finite Hyperbolic Horn Theory 

1. Introduction 

This study investigates a technique for shaping the 
sound spectrum of high intensity sound with relation to 
better acoustic environmental testing. The computations 
and computer simulations used in this study are based on 
high-intensity sound generator systems. 

The frequency response characteristics of an acoustic 
noise generating system are dependent upon the noise gen- 
erator, acoustic horn (a coupler), and the region for which 
the noise is intended (such as a test chamber, progressive 
wave tube, or free space, etc.). Each of these elements has 
separate frequency response characteristics, therefore, the 
frequency response Characteristics of the entire system are 
a function of these characteristics. 

At the present time, developmental contracts through 
other government and NASA centers are developing 
high-intensity sound generators with broader frequency 
response characteristics and greater sound power capa- 
bilities. All these developmental studies deal strictly with 

the sound generator. This particular study is unique in 
that the sound generator remains constant and the sound 
spectrums are varied by specially designed acoustic horns. 

The design for the acoustic horns is based on acoustic 
horn theory for a special family of horns, which are 
referred to as Hyperbolic Horns. These horns have, theo- 
retically, the unique property of a resonant response char- 
acteristic at frequencies just above their cutoff frequency. 

This study includes a complete mathematical analysis 
for hyperbolic horns, and a digital computer program to 
obtain frequency response data for a given single horn 
with particular response characteristics. From this study, 
a technique is developed for designing multiple horn 
arrays. This technique consists of designing each horn of 
the array slightly different from the other horns so that 
the next response function for the array has a smoother 
energy spectrum than any of the individual horns. The 
smoother spectrum is obtained by effectively averaging 
the outputs from all of the individual horns. 
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The techniques deveIoped in this study will allow a 
design parameter analysis for both single horns and mul- 
tiple horn arrays, with optimized response characteristics 
of the single horn (or of an entire multiple horn array). 

The ability to more accurately simulate broadband 
acoustic spectrums for reliable acoustic testing is ex- 
tremely important to minimize the probability of under- 
testing or overtesting the test article. These design 
techniques can also be applied in the audio engineering 
field, i.e., sound reproduction systems could be made 
better by improving the response characteristics of the 
system loudspeakers, both individually and as an array. 

II. Hyperbolic Horn Analysis 
Basic horn theory for a hyperbolic horn of infinite 

length predicts a very sharp frequency cutoff, depending 
on the horn flare constant and on the velocity of sound in 
the medium which for this study is air. For a hyperbolic 
horn of finite length, the response characteristics as a 
function of frequency are dependent upon the following: 

(1) Flare constant N .  

(2) Family parameter T .  

Note: The value T = 1 in hyperbolic horn equa- 
tion theory results in the exponential horn. 

(3) Length L .  

(4) Termination condition znr at the mouth of the horn, 
i.e., whether it opens into free space or an infinite 
progressive wave tube, etc. 

(5 )  Velocity of sound in the medium (air). 

Expressions for the hyperbolic horn response character- 
istics are given in Refs. 1 and 2. These expressions are 
derived for frequencies above the cutoff frequency; how- 
ever, these expressions must be modified to correctly 
describe the characteristics at the cutoff frequency and 
below the cutoff frequency. These response character- 
istics are given in the form of impedance expressions; 
therefore, the effect of the horn on the transmission of 
acoustic energy can be described in terms of a lumped 
impedance in an equivalent electrical analog circuit. 

A. Summary of Equations for zs 

Derivations of the required expressions are included in 
Appendix A. Starting with the above cutoff expression for 
the acoustic impedance zr of the general hyperbolic horn, 
the following expressions for zr are obtained: 

(1) For the general hyperbolic horn. 

(a) zT at cutoff. 

(b) zs below cutoff. 

exponential horn). 

(a) zr above cutoff. 

(b) zr at cutoff. 

(c) z7 below cutoff. 

(2) For the special case T = 1, hyperbolic horn (the 

The following is a summary of these expressions for zT, 
including the above cutoff expression for the general 
hyperbolic horn. 

1.  General hyperbolic horn 

Above cutoff (f > f c ) :  

-I \ [ ( j k  - :TzM) + ( j k T  N z M )  tanh ( N L ) ]  sin (bL) + zar [l + T tanh ( N L ) ]  cos (bL) 

T NT + ikZM '{[t (. - ( b' ~ k ~ ' T 2 ) z M }  + ( ) tanh ( N L ) ]  sin (bL) + [ $ + { 1 - (' i:) "") tanh ( N L ) ]  cos (bL) $ 

At cutoff ( f  f c ) :  

(2) 

[ -LNz,  { T  + tanh(NL)} + zM { 1 + Ttanh ( N L ) } ]  + j [ N L  { 1 + Ttanh ( N L ) } ]  
Zr = { [LN'T (1 + T tanh (NL) }  + N (1 + T tanh (NL) } ]  + j [LNzT2z, + {LNZTzM + N (1 - T 2 ) }  tanh ( N L ) ]  
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. 

Below cutoff (f < f c ) :  

[k { 1 + T tanh (NL)} sinh (BL)] { [ { ( - B 2  + N2Tz)zM + k2Tzytanh(NL)}sinh(BL) + ( B N ( 1 -  T2)zytanh(NL))cosh(BL)] Z, = k 

+ j[NzY{T + tanh(NL)}sinh(BL) - ( B z M ) { l  + Ttanh(NL)}cosh(BL)] 
-i [NkT { 1 + T tanh ( N L ) }  sinh (BL) + Bk { 1 + T tanh (NL)} cosh (BL)] 

2. Special hyperbolic horn (T = 1, exponential horn) 

Above cutoff: 

cos (bL + e)] + i [sin(bL)] 
jzy [sin (bL)] + [COS (bL - e ) ]  

At  cutoff: 

Below cutoff: 

ZT = 

{B cosh (BL) + N sinh 
1 

( L z M  sinh (BL) - i 
(N2 - B y  

All the expressions for z ,  can be written in the form: 

zr (o) = R,  (w) + j X, (0) (7) 

where 

R, (0)  = resistive component of impedance, and repre- 
sents energy transfer by horn 

and 

X, (0) = reactive component of acoustic impedance. 

111. Horn Design 

Horns with particular response characteristics can now 
be designed, using the results of the previous hyperbolic 

(3) 

horn analysis of paragraph I1 and the resulting expres- 
sions for the acoustic impedance Z, at the throat of a 
given horn. 

The physical parameters of a particular hyperbolic horn 
are determined from the following equation: 

S, = S, [cosh(Nx) + Tsinh(Nx)12 (8)  

Equation (8) may be written in the exponential form as 

(eNz - e-"]' (9) 
+ T  2 s, = s, 

where 

e N z  + e - N z  

2 cosh(Nx) = 

e N z  - e - N z  

2 sinh ( N x )  = 

Equation (9) may be rewritten 

or 

eZN5( l  + T )  - 2(S,/ST)HeNz + ( 1  - T )  = P ( x )  = O  

(11)  

the length L of a particular hyperbolic horn is determined 
from Eq. (11)  as follows: 
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c 

Therefore, 

where # is found from Eq. (lo), written as: 

Therefore, 

For the physical case of the length L of the horn, the 
root is used: 

When the cross sectional area at the throat S, of the horn 
and the cross sectional area at the mouth S ,  of the horn are 
defined, the length L is then only a function of T and N ,  or 

D + [DZ - (1 - T' ) ] 'h }  { (1 + T) 
L = L ( N ,  T) = (1/N) log, 

The value of N is determined from the cutoff frequency 
f c  of the horn, using the following expression: 

Equation (17) may now be written, in terms of the cutoff 
frequency, as: 

(19) 
D + [Dz - (1 - T')]%} 

= (&) log, { (1 + T) 

Equation (19) is, therefore, the expression for the Iength 
L of a given horn in terms of: 

(1) The cutoff frequency f c ,  

(2) The speed of sound c. 

4 

(3) The Square root of ratio of the cross sectional area at 
the mouth of the horn to the cross sectional area 
at the throat (Sy/ST)%. 

(4) The shape parameter T. 

Figure 1 shows an acoustic horn designed to these speci- 
fications. The equations, shown in Fig. 1, used in the 
design of the horn are: 

y (x) = - Y T  [cosh ( N x )  + T sinh (Nx)] (21) 

\y(.x) =yT [cosh (N.4 t T sinh (Nx)  3 t 
Y 

Fig. 1. Acoustic horn diagram 

and are derived from the following: 

S, = S, [cosh ( N x )  + T sinh (Nx)]' (22) 

where 

ry2 (x) (for circular cross section) 

S, = 4y2 (x) (for square cross section) 

yyZ (x) (for generalized cross section) 

ay: (for circular cross section) 

S, = 4y: (for square cross section) 

yy: (for generalized cross section) 

nyi (for circular cross section) 

SL = SII(Mouth) = 4yi (for square cross section) 

yy2 (for generalized cross section) 

1 
1 
I 

(23) 

(24) 

Therefore, 

vy* (x) = yy: [cosh (Nx) + T sinh (Nx)] '  

or 

y (x) = k y ,  [cosh (Nx) + T sinh (Nx)] 
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The hyperbolic horn data used for this parametric 
study are given in Table 1. The digital computer program 
written to perform this study using this data is given in 
Appendix B. This program is written for one particular 
group of horns in which the cutoff frequencies f c  were 
25, 50, and 100 Hz. Typical curves of the predicted horn 
responses are shown in Fig. 2. The produced curves 
graphically illustrate the computed response of the resis- 
tive component R (,,,) for the acoustic impedance versus 
frequency f in relation to the hyperbolic horn family 
parameter T and a fixed ratio of (&/ST)% This fixed 
ratio is: 

Table 1. Hyperbolic horn data used in parametric study 
- 
Horn 

1 
2 
3 
4 
5 
6 
7 
8 
9 
IO 
11 
12 
13 

- _i 1.5 

I .o 

0.5 

0 

r 
0.001 
0.0 IO 
0.100 
0.200 
0.300 
0.400 
0.500 
0.600 
0.700 
0.800 
0.900 
1 .oo 
2.00 

L(T1-m 

1.3162 
1.3113 
1.2646 
1.2171 
1.1735 
1.1333 
1.0959 
1.061 1 
1.0285 
0.9978 
0.9690 
0.94 1 7 
0.7325 

- 
Horn 

14 
i5 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

1 

3.00 
4.00 
5.00 
6.00 
7.00 
8.00 
9.00 

10.00 
20.00 
50.00 

100.00 
500.00 

1000.00 
1 o,ooo.00 

0.5944 
0.4964 
0.4239 
0.3685 
0.3250 
0.2902 
0.2617 
0.2382 
0.1 238 
0.0501 
0.0251 
0.0050 
0.0025 
0.0003 

$ 5.0 3.5 

4.5 
3.0 

4 .O 

2.5 3.5 

3 .O 
2.0 

2.5 

1.5 
2 .o 

I .o 1.5 

1.0 

0.5 

I 
HORN 2 

I 0 
0 200 400 600 800 1000 1200 1400 1600l8002000 0 200 400 600 800 loo0 1200 1400 1600 K)o02000 

FREQUENCY, Hz 

Fig. 2. 1-parameter study of hyperbolic horns (frequency response characteristics) 
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The cutoff frequency f c  is held constant at 100 Hz, 
therefore, 

D + [Dz - (1 - T')]% 
(1 + T )  ' = (&) loge { 

where 

and 

3.0- 

2.5- - 

2.0 

l.S---. 

1.0 -- 

0.5 -- 

- 
- 3 0  

6 

f r  = 100 Hz 

D = 5.585. 

HORN 6 

0 200 400 600 800 IO00 1200 1400 1600 I800 20( 

Equation (23) may be written as a function of only L as: 

((5.585) + [(5.585)' - 
(1 + T )  

L = L (T) = 0.547 log, 

A pc termination 2, at the mouth of the horn is used 
for the study. This termination is necessary to reveal the 
characteristics of the horn, independent of its particular 
termination. Naturally, the nature of Zu (i.e., zero baffle, 
infinite baffle, etc.) greatly affects 2, for a particular 
configuration. 

2.5 

2.0 

1.5 

10 

0 5  

0 

2.5 

2.0 

I .5 

I .o 

0.5 

0 
0 200 400 600 800 IO00 1200 I 

~~ 

HORN 7 
I 

FREQUENCY, Hz 

Fig. 2 (contd) 
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8 

FREQUENCY, Hz 

Fig. 2 (contd) 
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0.6 

0.5 

0.4 

0.3 

0.2 

0. I 

0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0. I 

0 
0 200 400 600 800 1000 1200 1400 1600 I8002000 0 200 400 600 800 1000 1200 1400 1600 lSOO2ooO 

FREQUENCY, Hz 

Fig. 2 kontdl 
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0.09 

0.08 

0.07 

0.06 

a05 

0.04 -- 
0.03 

0 1600 I8002000 

Fig. 2 (contd) 
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3 
Y 

d 0.032138 

0.032128 

0.032 I18 

0.032108 

0.032098 

0.032088 

0.032078 

0.032068 

0.032058 
0 200 400 600 800 IO00 1200 1400 1600 I800 20( 

FREQUENCY, Hz 

Fig. 2 (contd) 

A study of the graphic responses in Fig. 2 reveals a 
resonant response characteristic that is just above the cut- 
off frequency fc which varies with T .  With this informa- 
tion available, acoustic horns can be designed to use this 
resonance characteristic. For example, horns with large 
resonance characteristics (T < < 1) can be used to assist in 
simulating acoustic energy spectrums produced by the en- 
gines of spacecraft launch vehicles. Non-dimensionalized 
curves of rocket engine noise spectrums are contained in 
Ref. 3 and in other discussions on rocket noise. 

IV. Design of Multiple Horn Arrays 

A multiple horn array can be designed with the desired 
resonance response characteristics of a single horn and 

J P L  T E C H N K A L  REPORT 32-1 141 

FREQUENCY, Hz 

with the additional advantage from the averaging effect 
of several similar, but not identical, horns. This averaging 
technique consists of shifting the cutoff frequencies of the 
various horns so that the response peaks of some horns 
occur at the response nulls of the remaining horns. This 
effect tends to neutralize the extreme peak-to-null fre- 
quency spectrum oscillations. 

The individual and average frequency response char- 
acteristics of four multiple horn arrays, using the horn 
design data listed in Table 2, are graphically portrayed 
in Figs. 3-6, respectively. An overlay example of the 
response characteristics for one array is provided as part 
of Fig. 3. The heavy line in the figure shows the averag- 
ing effect resulting from the different horn responses with 

1 1  



c 

1.6 

14 

1.2 

I O  

0 8  

0 6  

0.4 

0 2  

0 

1.D 

1.4 - 

1.2 - 

1.0 - 

0.8 - 

0.6 - 

0.4 - 

0.2 - 

Fig. 3. Individual and average frequency response characteristics of the horns of array 1 

peaks (resonances) and nulls (relative antiresonances) at 
different frequencies. 

V. Results 

This acoustic horn analysis indicates that the response 
characteristics of a horn can be greatly improved in the 
frequency range just above cutoff by carefully controlling 
the design parameters. This resonance response can vary 
over a large range and consists of several narrow spikes 
which would result in a very rapidly changing narrow 
band analysis. This narrow spike condition can be mini- 
mized by the use of multiple horn arrays. Each horn of 
these arrays must be carefully designed so that the trans- 

12 

fer function of the array will provide the optimum re- 
sponse characteristics. 

VI. Conclusions 

The analysis performed in this study indicates that the 
concept of designing single horns and multiple horn 
arrays to achieve specialized response characteristics 
shows real promise. The analysis assumes linear acoustic 
response, however, this assumption becomes less valid as 
the acoustic levels become very large (above 135 dB in 
reference to 0.0002 pbar). These non-linear effects result 
in harmonic generation which, in turn, affects the spec- 
trums at the higher frequencies. However, these non- 
linear effects have little affect on the resonance peak of 
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1.61 I I 1 I I I 

FREQUENCY, Hz 

Fig. 3 (contdl 

the acoustic spectrum that is transmitted as a result of 
the horn response characteristics. Also, the horn analysis 
does not allow for the damping effects of either the horn 
or the transmitting medium (air). The effect of such damp- 
ing would decrease the peak amplitudes of the horn 
response function, and therefore, would decrease the 
response functions peak-to-null ratio. Introduction of 
damping could also tend to put a small frequency shift 
in the response function. 

The choice of the parameters for each of the horns of 
the multiple horn arrays is somewhat arbitrary, and is 

Table 2. Design data for multiple horn arrays 

Army 

1 

2 

3 

4 

Horn 

1 
2 
3 

1 
2 
3 

1 
2 
3 
4 

1 
2 
3 
4 
5 

T 

1 .o 
1 .o 
1 .o 
1 .o 
1 .o 
0.5 

1 .o 
1 .o 
1 .o 
1 .o 
1 .o 
1 .o 
1 .o 
1 .o 
1 .o 

fc, HZ 

133.3 
100.0 
72.5 

133.3 
100.0 
72.5 

100.0 
117.0 
134.0 
151.0 

100.0 
114.0 
127.0 
140.0 
153.0 

1, m 

0.7065 
0.9417 
1.2989 

0.7065 
0.9417 
1.5116 

0.9417 
0.8049 
0.7028 
0.6237 

0.94 17 
0.8261 
0.74 1 5 
0.6727 
0.61 55 

mainly intended to indicate the general concept of these 
arrays. Future investigations into this concept will include 
developing techniques to determine the design parameters 
for each of the horns in the array so that their overall 
average response function is optimized. The investigation 
will include obtaining the desired resonance response 
function with the smoothest energy spectrum envelope 
possible. 

Future investigations also include verifying these spec- 
trum shaping techniques using a Low-Frequency Plane- 
Wave Sound Generator and Impedance-Measuring De- 
vice, designed and built for this same supporting research 
and advance development task. A report on this device is 
being written and will be published upon final checkout 
of the unit. 
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16 

1.4 

I .2 

10 

0.8 

0 6  

0 4  

0.2 I . . 

- HORN I 
3 0  I 

2.5 

2 .a 

e! 16 

14 

12 

10 

0 8  

0 6  

04 

0 2  

a L 
200 400 600 800 1000 1200 lSv3 1600 l80020( 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

C 
200 400 1 

i 

I 

HOf 
I 

RAGE OF ARRAY 2 

0 1400 I600 l8002( 
- 

FREQUENCY, Hz 

Fig. 4. Individual and average frequency response characteristics of the horns of array 2 
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1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

C 

FREQUENCY, Hz 

Fig. 5. Individual and average frequency 
response characteristics of the 

horns of array 3 
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16 

0.4 - 

I .6 

I .4 

I .2 

1.0 

0.8 

0.6 

0.4 

0.2 

0 

I .6 

1.4 

1.2 

I .o 

0.8 

0.6 

0.4 

HORN 5 
1 

16 1 2  

14 

10 

1 2  

0 8  
10 

0 8  0 6  

0 6  

0 4  

0 4  

0 2  
0 2  

AVERAGE OF ARRAY 4 
0 0 1 1 1 1 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 
FREQUENCY, Hr 

Fig. 6. Individual and average frequency response characteristics of the horns of array 4 
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Appendix A 
Derivation of Horn Response Equations 

I ' 1. Derivations 

I 
1 

In this paper the term hyperbolic horn is used to designate those horns whose area law is given by (Refs. 1, 2, and 4): 

S ,  = ST [cash (Nx) + Tsinh ( N x ) ] ~  (A-1) 
I 

1 The result for the expression of the impedance at the throat zT of a hyperbolic horn as a function of the impedance at  
the mouth zr is given as follows (Ref. 1): 

- 4 
'\[d(N-("' ~ ~ 2 T ' ) z r } +  ( 

[(ik + (ikT NZY)tanh(NL)]sin(bL) + zr [ l  + Ttanh(NL)] cos(bL) 

NT + ikzn 
)tanh(NL)]sin(bL)+[$+{l - N ( l  ~ ~ ) z Y } t a n h ( N L ) ] c o s ( b L ) ~  

This equation is valid above cutoff, that is, for k' > N' (f > f c ) .  

Equation (A-2) is rearranged to arrive at expressions for the at-cutoff and below-cutoff frequencies of the general 
hyperbolic horn through derivations Nos. 1 and 2, respectively. These expressions are further simplified for the above- 
cutoff, at-cutoff, and below-cutoff frequencies of the exponential horn through derivations Nos. 2, 3, and 4, respectively. 
Derivations Nos. 5 and 6 are alternate methods of arriving at the at-cutoff and below-cutoff expressions for the expo- 
nential horn. 

A. Derivation No. 1 

At the cutoff frequency, the expression for zT+ (0 + iO ) / (O  + io) is an indeterminate form, therefore, L"ospita1 Rule 
must be used in determining the value for this expression, as shown by the following derivation. 

Given Eq. (A-2) at b = 0 (cutoff) and zy + (0 + jO) / (O  + io), thus, by L'Hospital Rule and with k = N: 

jk - NTzv 
;[ { ( ) + ( ikT NZy) tanh (NL)} sin (bL) + zy { 1 + T tanh (NL)} cos (bL) 

T d l  
( ~ [ z  (. -( " TkrTz)} zv + {( j k Z v )  tanh (NL) }  sin (bL) + {+ + [ 1 - (' '"1 tanh (!I,)} COS (bL)](  

b = O  

(A-3) 
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1 

' { L  [ N - {b' :krT2] z,] + [(NT + jkz,) tanh(NL)] cos (bL) + sin (bL) [%I L [(jk - NTzar) i (jkT - Nz,) tanh (NL)] cos (bL) 
( z T ) b , O  = - 

+ [z, (1 + T tanh (NL)} COS (bL) - bLz, {sin(bL)} - (bLzM) {T tanh (NL) sin (bL)}] 3 3 tanh (NL) sin (bL) 
b = O  

(A-4a) 

N ( l  - T')z ,  
jkT 

(A-4b) 1 L [(jk - NTzar) + (jkT - Nz,) tanh ( N L ) ]  + z ,  [l + T tanh (NL) ]  

N-- + (NT +jkz,)tanh(NL) (' - jkT T') ""> tanh ( N L ) ] /  

1 (A-4c) L [(jk - NTzM) + (jkT - N z M ) ]  tanh (NL) + z ,  [l + T tanh ( N L ) ]  
L [ N ( k T + j T ' N z M ) +  kT(NT + jkzM)tanh(NL)] + [k + {kT + jN(1 - T S ) }  tanh(NL)],f 

[ -LNzY {T + tanh (NL)} + z ,  { 1 + T tanh (NL)}] + j [kL { 1 + T tanh ( N L ) } ]  { [LNkT { 1 + T tanh (NL)} + k { 1 + T tanh ( N L ) } ]  + j [LNST'zM + {Lk'Tz, + N (1 - T Z ) }  tanh ( N L ) ]  ( z T ) b = o  = k 

(A-4d) 

Therefore, at f = f c . :  

Z T  = N [ - L N z M { T +  tanh(NL)} + z M { l  + Ttanh(NL)}J + j [NL{ l  + Ttanh(NL)}] 1 

64-5) 

{ [LN'T { 1 + T tanh (NL)} + N { 1 + T tanh (NL)}] + j [LN'T'z, + {LN'Tz,  -t N (1 - T ' ) }  tanh (NL)] ,f 

B. Derivation No. 2 

Below the cutoff frequency, the following derivation is necessary, since for k' < N', b = j (  I blz)!h, and the various 
terms, such as cos (bL), need to be transformed to usable functions. 

Given : 

[ {(jk - N T z M )  + (jkT - N z M )  tanh (NL)} sin (bL)  + bzu { 1 + T tanh ( N L ) }  cos (bL)1 
{[{NkT + j ( b  + NT)z,} + {(NkT' + jkTz,)tanh(NL)} sin(bL) #+ b {k + [kT + jN(1 - T') z,]} tanh (NL) cos (bL)] 

NOTE: Eq. (A-6) is a slightly rearranged version of Eq. (A-2). 

and 

b=jBfork < N jB 1 (k' - NZ)',$ or B2 = NZ - k? sin ( j B )  = j sinh B cos (jB) = cosh B 

thus 

{(jk - NTzI) + (jkT - NzY) tanh (NL)} jsinh (BL) { {NkT + j ( -  B2 + N2TZ)  zM} + { (NkT' + jk*TzM) tanh (NL)} j sinh (BL) 

+ jBz, (1 + T tanh (NL)} cosh (BL) 
+ jB {k + [kT + j N ( 1 -  T2) zM] tanh (NL)} cosh (BL)  

zr = k 

(A-7) 
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I or 

[k (1 + T tanh (NL)} sinh (BL)]  { [ { ( N T  - BZ) zr + k2TzM tanh (NL)} sinh (BL) + {BN (1 - T Z )  zy tanh (NL) cosh ( B L ) } ]  ZT = k 

+ j [NzM {T + tanh (NL)} sinh (BL) - Bzy { 1 + T tanh (NL)} cosh (BL)] 
- i [NkT { 1 + T tanh (NL)} sinh (BL) + Bk { 1 + T tanh (NL)} cosh ( B L ) ]  

1 merefore, for f < f c :  

I 
I [k ( 1  + T tanh (NL)} sinh (BL)]  { [ { ( -BZ + N2T2) zy + kZTzy tanh (NL)} sinh (BL) + { BN (1 - T Z )  zr tanh (NL)} cosh (BL)]  27 = k 

+ j [(NzY) {T + tanh (NL)} sinh(BL)- (BzY) (1  + Ttanh(NL)} cosh(BL)] 
- j [NkT { 1 + T tanh (NL)} sinh (BL) + Bk { 1 + T tanh (NL)} cosh (BL)]  (A-9) 

The expression of the impedance at the throat zT for an exponential horn (T = l), in terms of the impedance at the 
mouth zy, is given (Ref. 2)  as follows (above cutoff): 

Therefore, 

cos(b l+  e ) ]  + i (pc)  {sin(bL)] 
iS2ZM [sin (bL)]  + (pc)  [cos (bL - e ) ]  

I assuming 

cos (bL + e ) ]  + i [sin ( b L ) ]  
jzy [sin (bL) ]  + [cos (bL - e ) ]  ZT = {" [ 

I C. Derivation No. 3 

Since at the cutoff frequency zT+ (0 + p)/(O + io), L'Hospital Rule is applied for the following result. 

I Given Eq. (A-11) at the cutoff frequency f e  (from 4k2 = M Z )  with 

zar [cos ( ~ / 2 ) ]  + i [sin ( O ) ]  0 + i0 
izr [sin ( O ) ]  + [cos (-7r/2)] >-- 0 + 
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Hence, by L'Hospital Rule, zT (at f = f c )  is found as follows: 

1 z.) [COS ( b ~  + e)] + i [sin (bL)]} 
(d/db){jx. [sin(bL)] + [COS (bL - e)]} b = o  

L 

~ 2 )  1 j 
= j(2.L) [cos(bL)] - [sin(bL - tan-'N/b)] L + [d (1 + N2/b2) b = o  

Therefore, at f = fc: 

z,( l -  F) + i(F) 
Z T =  ( "2") ( y )  

1+- + jz. - 

(A-13a) 

(A-13b) I 
I 

(A-13c) 

I 

(A-13d) 

(A-13e) 

I 
1 

(A-13f) 

(A-14) 

D. Derivation No. 4 

Below the cutoff frequency, that is for 2k < M (or k < N), following results are derived: 

Given Eq. ( A-1 1) and the following definitions of trigonometric identities : 

(a) b = j B  

(c) sin ( j B )  = j sinh B 

(e) cos (+.e + bL) = cos ( -cO + jBL) = cos (e) cosh (BL) 

(f) 6 = tan-'(N/b) = tan-' (N/jB) 

(b) cos (e  t i B )  = cos (e) cosh (B) T j sin (e) sinh (B) 

(d) COS (jB) = cosh B 

i sin (e )  sinh (B) 

(g)'  COS(^) = jB/(N' - B2)'h (h) sin(8) = N / ( N 2  - B')M 
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then 

zar [cos(e)cosh(BL) - isin(O)sinh(BL)] + j [isinh(BL)] 
"= {izM [isinh(BL)] + [cos(O)cosh(BL) + i{sin(e)sinh(BL)}] 

Therefore, for f < f c :  

{B cosh (BL) - N sinh (BL)}] 2, 

(N' - B')'h 
[sinh(BL) - i 

I {B cosh (BL) + N sinh (BL)}] 
1 

(N2 - B y  zT = \[zM sinh (BL) - i 

(A-15) 

(A-16) 

E. Derivation No. 5 

Equation (A-14) can also be derived from the general expression for zT using the family parameter T equal to 1. Given 
Eq. (A-5) with T = 1 for the exponential horn, then Eq. (A-5) reduces to: 

[-LNz,{l + tanh(NL)} + z y { l  t tanh(NL)}] + i [ N L { l  + tanh(NL)}] 
" = k{ [LN2 {l + tanh(NL)} + N (1 + tanh(NL)}] + i [LNZzM ( 1  + tanh(NL)}] 

however, N = M/2; therefore, 

E Eq. (A-14) 

(A-17) 

(A-18) 

F. Derivation No. 6 

Equation (A-16) can also be derived from the general expression for zs using the family parameter T equal to 1. Given 
Eq. (A-9), then, for T = 1: 

[ksinh(BL)] + i[zdl{Nsinh(BL) - Bcosh(BL)}] c [zMk2 sinh (BL)] - i [k {Nsinh (BL) + B cosh(BL)}] zr = k 

1 for jB = b or B = -jb: 

[k sinh (BL)] + i [z ,  {N sinh (BL) + ib cosh (BL)}] 
[ zMkZ sinh (BL)] - i [ k { N sinh (BL) - ib cosh (BL)}] zr = k 

with tan-' (N/b)  = e, then 
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[(k/b) sinh (BL)] + i [zM (N/b) sinh (BL) + i cosh (BL)}] 
([z,k((k/b)sinh(BL))I - i[k{(N/b)sinh(BL) -icosh(BL)}] z7 = k 

with sec O = k/b, then 

[sec(O)sinh(BL)] + i [z,{tan(O)sinh(BL) + icosh(BL)}] 
{[zMk{sec(0)sinh(BL)}] - i [k{tan(e)sinh(BL) - icosh(BL)}I zT = k 

[sinh (BL)] + j [zM {sin ( e )  sinh (BL) + j cos (e) cosh (BL)}] 
[zMk {sinh (BL)}] - ik [sin (e) sinh (BL) - i {cos (e) cosh (BL)}] zr = k 

however, cos O = jB/(N2 - B2)'h and sin 0 = N/(NZ - B2 ) 'h ; therefore, 

ZM ( [sinh(BL) - i ( N 2  - B2 {Bcosh(BL) - Nsinh(BL)}] 
1 = Eq. (A-16) 

) Zr = \ 
I ([ zM sinh (BL) - i (N2 - B2)% { B cosh (BL) + N sinh (BL)}]) 

22 

(A-21) 1 

(A-22) I 
(A-23) I 
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Appendix B 
Dig ita1 Corn pu ter Program 

C E R 0 0 0 3 0 0  
r 
L 

C A C O U S T I C A L  HORN PROBLEM A P R I L ,  1966 
C x x x x x x x x  

COMPLEX T,N,L,F,B,T11K,A,ZM,T21T3tSINH1COSH,TANH,T4,T5,T6,T7* 
l Z T ~ Z T l , C , S M A L L B , S I N E , C O S I N E , T 8 , T 9 , T L O I  X ,  X 2 1  THETA, NUM 

C -- E R 0 0 0 2 0 0  
C T h E S E  ARE CONSTANTS USED THROUGHOUT THE PROGRAM 

C=(344.O,O.C)  
A=(0 .10 ,@.0 1 

C E R 0 0 0 5 0 0  
r 

101 I F I R C ; T = O  
C 
C READ I N  V A R I A q L E q  - HORN NUMBFR, T9 N AND L e  

READ ( 5 r l ) I H O R Y ,  T, NI L 
1 FORMAT ( 1 5 9  h F 1 0 . 4 )  

C -- -** 
C I F  HORN NlJMBFR I S  EQUAL TO ZERO, NO MORE DATA. 

C 
C P R I N T  OUT HEADER 
C 

C 

I F  ( I H O R N )  1 0 0 0 9 1 0 0 0 1 2  

7 W R I T F  f 6 9 4 ) I H O  RN ,T r N  ,L 
1 

h FO RMAT (1Hl. 1 7  X ,  7 1 H A C C U S T I C  HORN PRORLEM, /,28X,4HHORN, 
1 1 2 1 5 H  T = 9 7 F 5 . 7 1  5 H  N = 9 7F5.29  5 H  L = 9 2F5.23  

C x x x x x x x x  
C I F  HORN I S  ONE, TWO, OR THREE, DO FORMULAS 9 1  3, AND 2 
9 
C 
C 
C S E T  F T O  5 CPSI GO TO EQUATION 9 

6 F= (5.0.0.0) 
4 0 7  T 1 = N + L  

T 3 = C E X P ( - T 1  I 
T A N H - I T 3  - -  T ? l / I T ? + T ? )  

C 
c I N 0 1 2 8 0 0  
C I F  F HAS REACHED 100 CPS, GO TO EQUATION 3 

7 F F = R F A I  ( F )  
I F  ( F F - 1 0 0 . 0 )  8 9 2 0 9 2 3  

C I NO12600 
C COMPUTE B, ZMI TANH, COSHt AND SINH 
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C I N 0 1 1 4 0 0  
r 

C COMPUTF FQ~JATION 9 

C I N O 0 7 2 1  5 - 
C I N 0 0 9 2 0 0  
c F O R M  Z T 

c I N 0 0 7 2 0 5  
C I S  T H I S  THE F I R S T  T I M E  THROUGH 

Z T = K * f  ( T I + (  3.0 9 1.9 ) *  ( T 2 + T 3 )  1 / f T 4 + 7 5 - (  0.0 9 1 e 0  1 * f T 6 + T 7  1 1 1 

I F  ( T F T R S T )  1 4 9 1 4 . 9 1 6  
C Y E S  - GO RACK, COMPUTE EQUATION W I T H  OTHER Z M  
L E 1  R 5 T = 1 ~. 

Z T l = Z T  
7M=(L&~0.01 
GO TO 9 

C I N O 0 7 5 0 0  
C I N O 0 7 3 0 0  
C P R I N T  OUT BOTH VALIJE5 W I T H  F - - __ 

16 F F = R F A L ( F )  
~~ _ _  - - ~ ~ ~ _ _  W R I T F  ( 6 9 1 8 )  F F 9 7 T l r Z T  

1 8  FORMAT f1HOq 2 x 1  F6 .194H CPS, 3 x 9  2 E 1 7 . 5 9  3 x 9  2 E 1 7 . 5 1  
C ADD 5 CPS T O  F 

I F  I RST=O 
GO TO 7 

F = F + f 5 . 0 1 0 . 0 1  
~- 

C I N O 0 7 1 0 0  
1 I N O 0 6 9 0 0  
C -- -*- 
C COMPlJTF F Q U A T I O N  3 
C F I R S T  RESET Z M  
C COMPUTE K. 

2 0  K = ( . 0 1 8 3 r  O . O ) * F  
7 1  T l = K * A  

Z M = ~ 0 ~ 2 4 ~ 0 ~ 0 1 * T 1 * T 1 + ~ 0 ~ 0 ~ 1 ~ 0 ) * ~ 0 ~ 5 7 r 0 . 0 1 * T 1  
C I N 0 0 3 5 0 0  
C I N 0 0 3 3 0 0  

2 7  T l = - L * N * Z M * I T + T A N H ]  
T2=ZM+(Il.G~O.O1+T+TANHl 
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x x x x x x x x 
x x x x x x x x 

C 
C 
S I N 0 0 0 8 0 0  
C S U B S T I T U T E  OTHER VALUE OF ZM 

I F  ( I F 1  R S T I  2497497 6 

7 T 1 = 7 T  
24 I F I R S T = l  

ZM=( 1 C ~ 0 . 0  1 

C I N O 0 0 2 0 0  

I F  I RST=O 
W R I T F  16-18) F F  r 7 T I  -7T 

x x x x x x x x  C 
C NOW COMPllTF F Q U A T l O N  2 
C D E T E R M I N E  I F  F I S  EQUAL TO 1 5 0  C P S  

7 R  F F = R E A i  ( F )  
I F  I F F - 1 5 0 . 3 )  30932932 

C F UNDFR-150 C P S  - ADD 2 C P S  
30 F = F + I ~ .  C . 0 . O )  

GO TO 3 6  
r 

C ADO 5 CPS TO F 

C 
7 7  F = F + f 5 o O * O . O )  

x x x x x x x x  

C D E T E R M I N E  I F  F = 500 CPS 
21. F F = e A I  I F )  

I F  ( F F - 5 0 5 . 0 1  3 6 , 5 0 9 5 0  

C 
r GO CnMPllTF F Q I I A T I O N  A G A I N  FOR S F t W D  ZM 

I F  ( I F I R S T )  42942944 
& ?  l F l R C , T = I  

ZM= I1 e 0  90.0 I 
Z T 7 = 7 T  
GO TO 38 

J P L  TECHNICAL REPORT 32-1 141 25 



r c 
C I F  T H I S  I S  HORN 3 9  GO THROUGH 2ND SET OF EQUATIONS 

5 0  GO TO ( 1 0 1 t 1 0 1 , 5 1 ) r I H O R N  

C 
C COMPUTE E Q V A T I O N  2 2  - S P E C I A L  H Y P E R P O L I C  HORN 

I F I R S T = O  

CC=AI OGICC+CC) /O .O 
T l = C M P L X ( C C C 3 . O )  

T 9 = C F X P ( - T 1 )  
C FORM COS H AND S I N H  OF THE I N  

T ~ = ( T ~ + T ~ ) / ( ~ . O I O . O )  
T 7 =  f TR-T9  ) / ( 7  .O.O.O 1 ~ ~ - - ~ ~ ~  - ~ 

5 4  Z T = ( Z M * ( T 2 * T 6 - T 3 * T 7 ) - T 7 ) / ( - Z M * T 7 + T 2 * T 6 + T 3 * T 7 )  
c x x x x x x x x  
C I S  T H I S  THE F I R S T  T I M E  W I T H  T H I S  CPS 

I F  f I F I R S T )  6 2 , 6 3 9 6 4  
C F I R S T  T I V E  - SAVE Z T  

6 7  7 T l = 7 T  
ZM=(l.C,O.O 1 
I F I R S T = I  
GO TO 5 4  

6 4  F F = R F A I  ( F )  
W R I T E  (6,181 F F I Z T 1 9 Z T  

C DETERMINE I F  CUT OFF HAS BEEN REACHED. 
F = F + I  5. 0 90.0) ~ _ _ _  
I F I R S T = O  
FF=RFAL ( F  ) 
I F  ( F F - 1 0 0 . 0 )  5 3 9 6 6 9 6 6  
c--- _ _ _ _ _ _ _ - -  ~~ - 

COYPUTE F Q U A T I O N  1 7  

T 1 =K*A 

I F I R S T  0 

6 6  K = ( . 0 1 8 3 *  O c O ) * F  ~ - 

C 
~ 

7 M = f 0 . 3 4 ~ 0 ~ 0 ) * T l * T 1 + ( 0 ~ 0 ~ 1 ~ 0 ) * ( ~ . 5 7 r 0 . 0 ~ * T 1  
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Nomenclature 

a radius of cross sectional area at 
mouth, m 

c velocity of sound in medium trans- 
mitting sound waves (air), m/s 

f 

f e  

frequency of sound waves, Hz 

cutoff frequency of sound waves, Hz 

k wave number = ~ T / A  = w/c, m-* 

L length of horn, m 

M flare constant of exponential horn = 
2N,  m-’ 

N flare constant of hyperbolic horn, m-’ 

R, from z ,  = R ,  + jX,, N-s-m-‘ 

cross sectional area of hyperbolic (and 
exponential) horns at a position x units 
from throat, mz 

S, = cross sectional area at mouth, 

S, = cross sectional area at throat, 
m2 

mz 

from z ,  = R, + jX,, N - s - ~ - ~  

acoustical impedances of various 
acoustic systems to be described, zi = 

Z, = acoustical impedance at mouth 
z7 = acoustical impedance at throat 

acoustical impedances of various 
acoustic systems to be described (mks 
acoustic n), N - s - ~ - ~  

znf = acoustical impedance at mouth 
of particular horn being de- 
scribed, N - s - ~ - ~  

Z, = acoustical impedance at throat 
of particular horn being de- 
scribed, N - s - ~ - ~  

zi/(pc/S i) 

tan-’ ( X , / R , ) ,  deg 
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- 

GO TO 7 2  

I 

~ 

~ 

I 
I 

1 
I 

JPL TECHNICAL REPORT 32-7 747 

_ .  
WRIT; 76,181 F F t Z T l r Z T  

C 

T 1  = K * A  
C 
c COMPtITF F I R S T  7 M  

C 
C 

Z M = ( 0 ~ 2 4 ~ O ~ O ) * T l * T 1 + ( 0 . 0 , 1 . 0 ) w o * T l  

S F I R S T  fCMPlJTF SMAI I B ____ 
S M A L L B = ( 1 . 8 3 9 0 . 0 ) * C S Q R T (  ~ ~ 0 C 0 1 ~ 0 ~ 0 ) * F * F ~ ~ 1 ~ 0 t 0 . 0 1 ~  

C NOW COMPUTE THETA 
CC=REAL ( N / S M A L L B  I 

THETA=CMPLX (CC 90.0 I 

C GOT THETA - NOW COMPUTE E Q U A T I O N  1 6  

C F I R S T  GET S I N E S  AND C O S I N E S  
787 S I N F = C S I N ( S M A I  L B * L )  

C O S I N E  = C C C S f S M A L L B * L + T H E T A )  
T l = C C O S ( S M A L L R * L - T H E T A )  
T2=ZM*COSINE+(O.O91.O~*SINE 
T 3 = ( 3 . 0 9 1 o 3 ~ + Z ~ * S I N E + T l  ~. 

Z T = T 2 / T 3  
__ C 

C GO THRU FOR OTHER ZM 
I F  ( I F I R S T I  7 8 8 9 7 8 8 9 7 8 9  

789 I F I R S T = l  

GO TO 7 8 7  
7 8 9  F F = R E A L ( F )  

I F I R S T = O  
W R I T E  (6918) F F r Z T l r Z T  

C 
C DETERMINE I F  PROBLEM IS OVER 

I F  (FF-5OO.C) 8Ct101r101 
8 0  I F  ( F F - I s C . 0 )  82986986 
8 7  F=F+(2 .09C.O)  

GO TO 7 8 0  
8 6  F = F + ( 5 . 0 9 0 . 0 )  

GO TO 7 8 0  _ _  - ~ 

C 
1 0 0  CONTINUE 

1 0 0 0  STOP 
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